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ABSTRACT
Modern processors have special non-temporal store instructions to
save memory bandwidth on streaming store operations – where
each element of a data structure is written to only once before it is
evicted from the cache hierarchy. In this work, we provide details
on the compiler-based generation of these instructions via static
analysis of memory accesses in loops. We also evaluate their impact
on the performance of a variety of streaming benchmarks. Our
results show that in many cases, our framework is able to insert
non-temporal store instructions in the same code locations as in
hand-optimized code and achieve speedup results in total execution
time.
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1 INTRODUCTION
Typical store instructions place cache lines back into the highest
level of the cache hierarchy and allow it to travel down the hierarchy
before it is ultimately evicted. In most use cases this is an ideal
approach such as if those cache lines have temporal reuse then they
can be quickly accessed again rather than incurring a large latency
penalty due to fetching from a lower level in the cache hierarchy.
In a data streaming scenario, however, all of the cache lines that are
hit are guaranteed to have no temporal reuse. For data streaming,
storing a cache line back into the cache hierarchy would not be
useful and simply introduces unnecessary data into the cache.
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For these types of data streaming behaviors a programmer can
take advantage of the non-temporal store instructions introduced
in the Streaming SIMD Extension standard (SSE) [1]. Rather than
storing a cache line back into the L1 cache when the processor is
finished using the data, a non-temporal store will bypass the cache
hierarchy entirely and store the cache line directly back into main
memory.

This behavior of the non-temporal store is beneficial mainly for
the reason that it allows cache lines with no temporal reuse to not
pollute the cache. If a cache line with no temporal reuse is stored
back into the top of the cache hierarchy then, using an LRU-like
eviction policy, that cache line will have to be evicted from every
level of the cache hierarchy before making it back to main memory.
This causes two issues which are resolve through non-temporal
store instructions: there is increased bus traffic as more data must
travel along the memory hierarchy, and the cache line will take
up needlessly extra space in the cache will allow less space for
data with temporal reuse causing more misses and again more bus
traffic. Overall switching regular store instructions to non-temporal
store instructions when the cache lines are guaranteed to have no
temporal reuse will decrease the total pressure on the memory
bandwidth.

Previous works that look directly at reducing cache pollution
with regards to using non-temporal memory instructions have
been primarily based on using statistical or analytical models in
order to determine which memory accesses have no temporal reuse
and thus where to insert the non-temporal memory instructions
[3, 4, 10]. Other works have proposed dynamic profiling techniques
that characterize reuse distance, which is the primary metric in
determining whether or not a non-temporal instruction can be
inserted for optimization [6, 7, 9].

The types of applications that benefit the most from using non-
temporal store instructions will involve streaming large amounts
of data that has no temporal reuse. Due to this, trace-based and
dynamic analysis and optimization methods may suffer from a high
startup cost as the unoptimized program will require streaming
through a large amount of data before any optimizations can take
place.

In this paper we propose a framework for identifying store in-
structions as candidates for swapping to a non-temporal store using
global reuse distance between memory accesses to the same loca-
tion. This analysis and code transformation derives reuse distance
from the structure of the code rather and can run at compile time
than at runtime. Performing initial optimizations before the pro-
gram runs for the first time will allow for a decreased strain on
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the memory bandwidth and total execution time of the program
immediately.

The main contribution of this work is providing a static analysis
framework for approximating global reuse distance which requires
low asymptotic work to insert non-temporal store instructions and
reduce cache pollution. The proposed framework fits well into the
existing trace-based and dynamic analysis literature by providing
an already optimized starting point for those existing optimization
frameworks.

2 GLOBAL DATA REUSE ANALYSIS
This section describes in detail the individual components of the
static analysis framework: the data-flow analysis and the static
global reuse distance analysis.

2.1 Data-flow Analysis
Upon initialization, the pass first collects every memory access
instruction across the entire program. Using the set of all memory
access instructions, we use a simple data-flow analysis to determine
whichmemory access instructions can possibly have temporal reuse
with one another. To do so, we collect, at every basic block, the set
of load and store instructions that come before and at that basic
block.

The domain of the data-flow analysis is the set of load and store
instructions found within the program. The analysis is a backwards
flowing analysis with the union operation as the meet operator.

⊤ is the empty set and ⊥ is the complete set. Since the domain
of the data-flow analysis is just the memory access instructions and
the height of the lattice is very short, this data-flow analysis is com-
putationally cheap to run, takes up very little space asymptotically,
and converges quickly.

2.2 Static Global Reuse Distance Analysis
For each pair of memory accesses that could have temporal reuse
with respect to each other, we first check whether or not they access
the same underlying memory location (eg. difference indices of one
array). We can track this using the LLVM Value Tracking analysis.
If two memory accesses do reference the same location, then we
attempt to statically compute the minimum reuse distance between
those two accesses. If two accesses to the same memory location
have a reuse distance larger than the total memory of the cache
hierarchy of the processor, then using a regular store instruction at
the former access would guarantee that the cache line containing
the memory location would be fully evicted to main memory before
the latter access.

In order to statically compute the distance between two accesses,
we look at all the loops between those two accesses and sum their
working set sizes/cache footprints. This can be compute by mul-
tiplying their trip counts with the amount of data accessed per
iteration. This will only work with loops that access a constant
amount of data per iteration, which is generally the case with data
streaming applications. For two accesses that are within the same
(inner) loop, we take advantage of LLVM’s Loop Cache Analysis
[2], which uses loop dependency analysis and the SCalar EVolu-
tion (SCEV) alias analysis to determine if there is temporal reuse

between two accesses in a loop within a certain maximum reuse
distance.

Our analysis does not consider accesses that occur outside of
loops such as singleton memory accesses. Since a non-temporal
store instruction optimization only makes sense for a reuse distance
as large as the entire cache hierarchy, a since singleton accesses into
a typical array of data will contribute less than 10 thousandth of a
percent to the total reuse distance between two memory accesses.
Additionally if a singleton store instruction were to be transformed
into a non-temporal store then the execution time and memory
bandwidth benefits would like be unnoticeable.

Similarly to the data-flow analysis from the previous section, this
static global reuse distance analysis is also not very asymptotically
complex. While the cache footprint computations are not trivial,
the total amount of iterations run scales at an 𝑂 (𝑁 2) rate with
respect to the number of memory access instructions in the entire
program and takes no additional space as we do not need to store
the reuse distance results.

2.3 The Evolution of Our Design
At the proposal stage of this project we knew we needed some form
of alias analysis to determine whether or not two memory accesses
would collide. So then our initial approach included using sophis-
ticated range analysis implementations such as [8, 11] to do alias
analysis within loops. The primary issue with this approach was
that while information about temporal reuse of memory accesses
can be derived with range analysis, it did not provide any infor-
mation about whether or not a non-temporal memory instruction
could be inserted.

Rather than relying on some complex range analysis, we needed
to consider what fundamental information was actually required in
order to make the decision that a regular store instruction could be
swapped with a non-temporal store instruction. To make that deci-
sion, we needed to know, for each store instruction in the program,
how "soon" a subsequent memory access instruction touched the
same memory location. Once the fundamental design converged
upon approximating the distance, in terms of memory usage, be-
tween two memory accesses to the same location we began looking
into reuse distance literature.

After deciding on the final version of the overall approach to
do the static analysis of reuse distance, we realized that the origi-
nal plan with range analysis was not necessary as calculating the
reuse distance required global analysis whereas the range analysis
frameworks only performed analysis local to each loop.

3 INSERTION OF NON-TEMPORAL STORE
INSTRUCTIONS

During the pair-wise reuse distance analysis discussed in the pre-
vious section, whenever a store instruction is found to have no
temporal reuse it can be swapped for a non-temporal store instruc-
tion. The insertion of the non-temporal instruction involves adding
a !nontemporal metadata hint to the instruction in the LLVM IR.
This metadata hint allows the backend code generator to select the
non-temporal version of the instruction. For example instead of
vmovaps to store packed floating point values in SIMD vectorized
code, the code generator can select vmovntps.
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It is worth noting that the set of non-temporal store instructions
on modern Intel and AMD processors is limited, especially for
scalar stores [1]. In particular, there is no instruction for the non-
temporal store of a floating point scalar in the Streaming SIMD
Extensions (SSE) standard. One only exists (movntsd) in the SSE4a
extension, which is specific to AMD. While the integer version of
the instruction (movntq) can be used for storing floating points,
LLVM’s instruction selector does not elect to do so.

Overall the behavior of the instruction selector with regards to
using non-temporal memory instructions seems to be quite con-
servative. It was difficult to force the instruction selector to select
the non-temporal version of a store instruction in some of our ex-
periments. This is perhaps an expected result as recklessly using
non-temporal memory instructions can have disastrous effects on
the memory behavior and total execution time of a program when
used incorrectly.

4 EXPERIMENTAL SETUP
We implemented our analysis and transformation pass in the LLVM
compiler framework on version 10.0. All of experiments were per-
formed on a computer with an AMD Ryzen 2700X CPU (znver1
architecture) and 16GB of memory, running Debian 10.

For each of the experiments, the LLVM IR bitcode files were
generated using Clang 10.0 with the command line options clang
-O3 -fno-unroll-loops. Unrolled loops presented complications
for our analysis as well as caused worse performance in our exper-
iments (likely due to increased cache contention leading to more
cache misses).

The analysis and transformation pass was then run on the LLVM
bitcode file to insert the non-temporal store instructions. Assem-
bly code for debugging and evaluation was compiled using llc
-O3 -mattr=+sse4a to take advantage of the AMD-specific non-
temporal store instructions. Note that the optimal binaries which
we used for our results will not run on Intel processors due to the
SSE4a-specific instructions.

5 EXPERIMENTAL EVALUATION
In general, the optimization pass was able to insert non-temporal
instructions in the same locations as hand-optimized code and
resulted in an overall speedup in program execution time.

5.1 SAXPY Microbenchmark
The single-precision floating point version of the generalized vec-
tor addition micro-benchmark, commonly referred to as SAXPY,
consists of performing a multiply and an add operation on each
element of two arrays, as shown in Listing 1. SAXPY is designed to
be memory-bound and completely saturate the memory bandwidth
of the cores it is running on. We evaluated our optimization on a
manually vectorized version of the benchmark, using 256-bit wide
AVX SIMD instructions but no non-temporal ones. Indeed, the op-
timization was able to convert the store to y[i] (the only store in
the loop) to a non-temporal store, as it stores to a distinct location
each iteration.

Figure 1 shows the execution times for each version of the applied
optimizations. With no AVX SIMD instructions, the total execution
time of the program was the longest as expected. Since this SAXPY

void saxpy(int N, float a, float* x, float* y) {
for (int i = 0; i < N; i++){

y[i] = a * x[i] + y[i];
}

}

Listing 1: SAXPY Main Loop

vmulss (%rsi,%rdi,4), %xmm0, %xmm1
vaddss (%rdx,%rdi,4), %xmm1, %xmm1
vmovss %xmm1, (%rcx,%rdi,4)
incq %rdi
cmpq %rdi, %rax

Listing 2: SAXPY Main Loop Excerpt (Original Assembly)

vmulss (%rsi,%rdi,4), %xmm0, %xmm1
vaddss (%rdx,%rdi,4), %xmm1, %xmm1
movntss %xmm1, (%rcx,%rdi,4)
incq %rdi
cmpq %rdi, %rax

Listing 3: SAXPY Main Loop Excerpt (Optimized Assembly)

Figure 1: Execution Time Comparison for SAXPY

code is memory throughput bound, the version with SIMD instruc-
tions does not achieve anywhere close to ideal speedup compared
to the fully sequential version of the code.

With the non-temporal optimization, the optimized program
achieves 30% and 36% over the serial and SIMD versions respectively.
This brings the total speedup result for SIMD plus non-temporal to
45% over the regular sequential version of the program.

For our experiment, the SAXPY program was run for a total of 3
trials. In each trial the SAXPY program streamed twenty million
floats for a total of 80 megabytes of data. This should allow the
cache to hit a steady state and reduce the variations caused by noise.

Listings 2 and 3 show the regular and optimized generated as-
sembly for the serial version respectively. We can observe that
a movntss instruction is selected by the backend code generator
instead of a vmovss instruction as expected.
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for (int m = 0; m < Nm; m++) {
for (int g = 0; g < Ng; g++) {
for (int l = 0; l < Nl; l++) {

for (int k = 0; k < Nk; k++) {
for (int j = 0; j < Nj; j++) {
double total = 0.0;
/* prefetch from q */
_mm_prefetch((const char*)

&q[m][g][l][k][j][0]);
for (int v = 0; v < VLEN; v++) {

/* Set r */
r[m][g][l][k][j][v] = ...;

/* Update x, y and z */
x[m][g][k][j][v] = ...;
y[m][g][l][j][v] = ...;
z[m][g][l][k][v] = ...;

/* Reduce over Ni */
total += r[m][g][l][k][j][v];

} /* VLEN */

sum[m][l][k][j] += total;

} /* Nj */
} /* Nk */

} /* Nl */
} /* Ng */

} /* Nm */

Listing 4: Mega-Stream Kernel Main Loop Pseudo-code

...
movsd (%rdi,%r11), %xmm6
mulsd %xmm3, %xmm6
addsd %xmm5, %xmm6
movsd %xmm6, (%r10,%r11)
addsd %xmm6, %xmm1
mulsd %xmm0, %xmm6
movapd %xmm6, %xmm5
...

Listing 5: Mega-Stream Kernel Main Loop Excerpt (Original
Assembly)

5.2 Mega-stream Benchmark
The mega-stream benchmark [5] is a streaming benchmark de-
signed to saturate the memory bandwidth on a machine. The bench-
mark is intended to be compiled with the Intel C Compiler (ICC),
though as mentioned in the Experimental Setup section we com-
piled it with Clang and disabled multi-threaded parallelism from
OpenMP. We ran it with the default configuration, which involves
arrays of dimension 128 × 16 × 16 × 16 × 64.

Listing 4 shows a partially redacted version (for clarity) of mega-
stream’s main kernel function. This benchmark is also intended

...
movsd (%r14,%r8), %xmm6
mulsd %xmm3, %xmm6
addsd %xmm5, %xmm6
movntsd %xmm6, (%rdx,%r8)
addsd %xmm6, %xmm1
mulsd %xmm0, %xmm6
movapd %xmm6, %xmm5
...

Listing 6: Mega-Stream Kernel Main Loop Excerpt (Opti-
mized Assembly)

Figure 2: Execution Time Comparison for Mega-Stream

to saturate the memory bandwidth of a processor with multiple
high-dimension arrays and nested loops.

Figure 2 shows the execution times for the regular and non-
temporal versions of the mega-stream execution. With regular store
instructions, the total execution time of the program is slightly
longer as expected. The non-temporal version of the mega-stream
execution achieves a 6% improvement in the total execution time
over the regular version.

For our experiment, we ran 1 trial of each version of the mega-
stream binary. Within each whole program execution, the main
loop is run 100 times. Within each run of the main loop, the mega-
stream kernel streams over 589.3 megabytes of data. This should
allow the cache to hit a steady state and reduce the variations caused
by noise.

Compared to the SAXPY microbenchmark, while we still see
some execution time improvements they are not as significant. This
is because the mega-stream benchmark deals with 8 arrays, only
one of which exhibits non-temporal characteristics and can thus
be optimized by our pass. So while the non-temporal optimization
decreases the total pressure on the memory bandwidth, we do not
see a significant speedup in the total program execution time.

Listings 5 and 6 show an excerpt from the same location in the
regular and optimized versions of the assembly code respectively.
It is interesting to note that in the SAXPY experiment the register
allocation does not change between the regular and non-temporal
versions of the code. However between listings 5 and 6, there is a
clear difference in the scalar register allocation.
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6 SURPRISES AND LESSONS LEARNED
We were pleasantly surprised by the amount of symbolic analysis
for loops that already exist in the LLVM compiler infrastructure,
such as the Scalar Evolution (SCEV) framework, the dependency
analysis pass, and alias analysis passes. Not having to "re-invent the
wheel" for all of the smaller components of the project allowed us to
focus more directly on the fundamental conceptual underpinnings
of our optimization pass.

We were unpleasantly surprised by the difficulty of the LLVM
instruction selector in generating non-temporal memory instruc-
tions. If the original data was in an xmm/ymm/zmm register for which
there is no scalar non-temporal store instruction in the standard
SSE/AVX instruction set, LLVM simply gives up instead of trying
to allocate the data to a general-purpose register instead. The only
workaround we found other than directly modifying the instruction
selector behavior was to use SSE4a instructions on the an AMD
processor.

7 CONCLUSION
This paper presents a static analysis framework for optimizing data
streaming programs at compile time by combining data-flow analy-
sis with static global data reuse analysis. The main contribution of
this work is validating the the effectiveness of cheap static analysis
for reducing cache pollution. The empirical results presented in this
paper show that static analysis can be effective at approximating
global reuse distance and for optimizing non-temporal memory
instructions.

8 FUTUREWORK
The clearest direction for future work from this work is considera-
tions for dynamic optimization in addition to the findings presented
in this paper. Specifically, for programs where we are unable to
statically determine the reuse distance, an optimizing compiler can
generate two branches based on whether the reuse distance is large
enough or not, with one using non-temporal instructions and one
not.

In addition, another clear direction of future work would be to
incorporate non-temporal load instructions (e.g. for prefetching) as
well. A non-temporal prefetch instruction achieves the same end
goal of not polluting the cache hierarchy by loading cache lines
only into the L1 cache and not any other levels in the hierarchy. For
the purposes of this work, to demonstrate the effectiveness of static
analysis on non-temporal optimization, we elected to not introduce
the extra complexity of using non-temporal load instructions. How-
ever the same static global reuse distance analysis should work
effectively for non-temporal load optimizations as well.

A limitation in our work currently is that we lose some level of
granularity by running our analysis using LLVM’s FunctionPass
class. Due to this, the static global reuse distance analysis for in-
structions occurring at the end of a function may not be completely
accurate. However, because of the large reuse distance required for
optimizing with non-temporal store instructions, for the experi-
ments in this paper this was not an issue. For future iterations of
this work, switching over to an analysis pass that runs over the
entire program at once and is context-aware would provide a more
detailed analysis that can optimize more aggressively.
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