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Parallel Galaxy Simulation with the Barnes-Hut Algorithm

Summary

We implemented multiple optimized parallel implementations of a galaxy evolution simulator for
use on multi-core CPU platforms using the OpenMP framework. Given the success of our imple-
mentations, we have demonstrated that galaxy simulation is highly-parallelizable on the CPU, even
when computed using more involved methods such as the Barnes-Hut Algorithm.

Background

A Simple Galaxy Simulator

Figure 1: Galaxy evolution from uniform body distribution.

Galaxies are complex natural phenomena with such intricate continuous behavior that it is seem-
ingly impossible to simulate them on a discrete platform, such as the modern day computer. How-
ever, if one could be made, an accurate galaxy simulator would provide tremendous insight into
many questions humanity has pondered over the nature of the universe, and our place in it:

• What does the arrangement of a galaxy’s bodies tell us about the history of the galaxy?

• Can we form a model of the life cycle of galaxies based on how the simulation evolves? Are
there multiple common patterns of galaxy life cycles?

• How frequent are collisions of galaxy bodies or clusters?
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• How significantly do initial conditions, such as the initial space, mass, and size distribution
of bodies, affect the future evolution of the galaxy. In a similar vein, what initial conditions
lead to the birth, death, and split of galaxies?

• Given the observed arrangement of bodies in the Milky Way, can we make estimations with
high probability of our galaxy’s future? What is the probability Earth will collide with another
body in our galaxy? How would a likely future galaxy event impact life on Earth?

A suitable starting point for this inquiry is the most easily observable force on galaxy bodies from
afar: gravity. The Moon around the Earth, the Earth around the Sun, and clusters of stars around
the Milky Way’s center. We have observed this force for centuries, and the force on any body seems
to independently follow the following formulation:

Figure 2: Gravitational force on a single body considering N total bodies.

Figure 3: Gravitational force on Bi considering surrounding bodies.

Where G is the Universal Gravitational Constant (6.67408(31) × 1011 m3 · kg−1 · s−2). In the
above formulation we see that the force on a body from another body is inversely proportional to
the square of the distance between the bodies. We also see that the force is directly proportional
to the product of the masses of the bodies. We can simplify the expression above by deriving an
expression for the acceleration on any given body. This can be done by simply using F = ma, and
dividing out the mass of the body the force is acting on. Finally, we notice that as the distance
between two bodies becomes arbitrarily small, the acceleration approaches infinity. To resolve this
issue, we introduce a small softening factor ε to set the acceleration between bodies to zero in the
event of an arbitrarily small distance. We arrive at the following formulation to independently
compute the acceleration of each body given a configuration of the N bodies:
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Figure 4: Acceleration of a single body considering N total bodies.

Our goal in this project is to demonstrate that the simulation of galaxy evolution is highly paral-
lelizable on CPU platforms. Here we have reduced the immense task of constructing an accurate
galaxy simulator to one that approximates the effect gravity has on the evolution of a galaxy’s bod-
ies. This is a sub-problem that must be considered during the construction of any accurate galaxy
simulator, and in particular we will demonstrate that this sub-problem is highly parallelizable on
CPU platforms, even with more involved sequential methods of approximation.

We now note that the computation of each body’s acceleration is independent from the computation
for each other body. In this way, a naive approach of computing every body’s acceleration by
considering all pairs of bodies is embarrassingly parallelizable, since we can evenly balance load by
partitioning the bodies into equal buckets. However, this naive algorithm is sub-optimal for larger
scale simulations, since the computational cost grows with O(n2), where n is the total number of
bodies we are considering, which becomes ridiculously expensive for large n.

Next, we consider that this problem is a classic example of an N-body problem, in which we have
a configuration of bodies and their positions in space, and we aim to update the position of each
body by considering the positions of each other body. This problem domain has historically been
the subject of extensive inquiry, and as such there is a wide array of potential algorithms to choose
from. A notable sequential algorithm is the Barnes-Hut Algorithm, in which we build a spatial tree
to form a hierarchical clustering of bodies, so that during the acceleration computation phase, each
body can treat far away clusters as a single larger body to reduce total computation. This results
in an average O(n log n) algorithm instead of the all-pairs naive O(n2) algorithm, where n is the
number of bodies we are considering.
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The Barnes-Hut Algorithm

The Barnes-Hut Algorithm operates by first constructing a spatial tree to hierarchically distribute
bodies between tree nodes based on closeness in space. A common type of tree used in this scenario
is the quadtree in 2 dimensions, due to the relative simplicity of its construction. Quadtrees
subdivide the 2D square they represent into 4 equally sized squares corresponding to 4 subtrees.
When considering bodies in space, the quadtree continues to subdivide until each leaf node only
contains a single body. A fully constructed quadtree given a configuration of bodies can be seen
below in Figure 5:

Figure 5: Quadtree constructed from spatial configuration of bodies.

After the quadtree is constructed, we aggregate forces for each body. To do this, we first consider
the root, then recurse into each of the 4 subtrees until one of the following conditions are met:

1. If the node we are looking at is a leaf, then add the force contribution from the body at the
leaf if it exists.

2. If the side length of the node’s region divided by the distance from the body to the center
of mass of the node is less than some defined θ, treat the node as a single mass and add its
force contribution.

The second condition is a little more complicated, but it is what makes the Barnes-Hut Algorithm
more efficient than a naive implementation. Looking at Figure 5 above, we test if

L

D
< θ

to decide when we should approximate a cluster of bodies as a single body. In this way, by choosing
a larger θ, we can improve performance at the cost of increased approximation. We note that the
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expected number of nodes touched during force aggregation for a single body is

≈ log(N)

θ2
,

resulting in an O(n log n) algorithm as long as θ > 0.

The above description is how we can compute forces and thus accelerations for every body given
the current configuration of the bodies in space. However, to perform a simulation, we need to
evolve the galaxy over time. To do this, we will iterate over a number of simulation steps, and at
each step we will compute the acceleration for each body, then integrate over a short timestep to
get the new position for each body.

Figure 6: Example of quadtree hierarchical clustering.
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Incorrect Correctness

As noted previously, the Barnes-Hut Algorithm is an approximation of the discrete N-body problem.
But the N-body problem itself is an approximation of the evolution of a galaxy. Since we are unable
to setup a galaxy and watch it evolve to compare with our simulation, we must work under the
context of the approximations we are making. In this case, since we are not using the simulation
for detailed scientific analysis, we will judge correctness based on how reasonable body movements
appear in a visualizer.

Now there is a further point of consideration for our algorithm in terms of correctness. How can we
integrate acceleration and velocity to compute updated positions for each body? We could simply
multiply acceleration by the timestep to compute the change in velocity, and multiply the new
velocity by the timestep to compute the change in position. This method is known as Forward
Euler, or the Explicit Euler method. However, one consideration we need to make when designing
our numerical integrator is the change in energy of the system an integration will incur. This
is important, because, for example, if the energy of the system is constantly increasing, we will
notice on the visualizer that bodies are getting farther and farther apart from one another as the
simulation continues. This is not reasonable behavior, and as such does not satisfy our definition
of correctness above.

The Forward Euler method described in the paragraph above will change the energy of the system
quite quickly given any reasonable timestep (one that is not extremely close to zero). An alternative
numerical integration technique which is popular in this domain is Verlet Integration. The technique
lowers change in energy by using velocity a half timestep in the future to integrate position, instead
of velocity an entire timestep in the future. The practical implementation of the technique for our
application is as follows:

1. ~v(t+ 1
2∆t) = ~v(t) + 1

2~a(t)∆t

2. ~x(t+ ∆t) = ~x(t) + ~v(t+ 1
2∆t)∆t

3. Compute ~a(t+ ∆t) from ~x(t+ ∆t) using the Barnes-Hut Algorithm

4. ~v(t+ ∆t) = ~v(t+ 1
2∆t) + 1

2~a(t+ ∆t)∆t

Below in Figure 7 we can see both numerical techniques used to estimate a simple harmonic function:

Figure 7: Black is actual, Red is Verlet, Blue is Euler
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Overview

We have explored how we can construct an optimized sequential implementation that satisfies our
conditions of correctness for a gravity-based galaxy simulation approximation. Our application
structure is presented in the pseudo-code below:

Algorithm 1 Sequential Galaxy Simulation with the Barnes-Hut Algorithm

1: procedure Simulate
2: for step in simulation steps do
3: for body in galaxy bodies do
4: update body position and half timestep velocity

5: initialize quadtree
6: for body in galaxy bodies do
7: insert body into quadtree

8: traverse quadtree to assign masses and center of masses to nodes
9: for body in galaxy bodies do

10: update body acceleration by accumulating accelerations from the quadtree

11: for body in galaxy bodies do
12: update body velocity

13: write simulation state to file for visualizer

The above pseudo-code has many independent for loops around the bodies of the simulated galaxy.
This may seem to result in an embarassingly parallelizable application, but we notice two challenges:

1. Inserting bodies in parallel to the quadtree requires the data structure to handle concurrent
operations.

2. Different bodies require a different amount of work to accumulate accelerations from the
quadtree. This would result in an imbalanced work load if we were to arbitrarily assign
bodies during the acceleration update phase.

Next we discuss our approach to tackling these challenges as well as our different implementations
of the formulation.
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Approach

Tools and Target Architecture

Our application targets multi-core CPU platforms, and specifically machines with homogeneous
compute resources such as the GHC machines we have used for other assignments in this course.
Processors on the GHC machines have 8 cores supporting simultaneous multithreading (Intel hy-
perthreading), allowing for efficient use of a maximum of 16 threads in our application. We have
performed in-depth benchmarking and cross-implementation analysis on the GHC machines, and
have performed a higher-level cross-system analysis between the GHC machines and the Latedays
clusters. All code was written from scratch in the C programming language, using the OpenMP
parallel framework. OpenMP is preferable in our case to a lower-level API since it allows us to
simply identify parallel blocks of code for the compiler and machine to map to compute resources
and execute. This both eases development time as well as allowing our implementations to be
portable between machines with varying system characteristics.

One piece of starter code we did use is the cycletimer.c from the Graph Rats starter code
https://github.com/cmu15418/asst3-s19. This allows us to perform fine-grained timings of the
various sub-routines of our implementations. We implemented a module monitor.{h/c} to provide
macros to keep track of the timings of each sub-routine in the algorithm.

Figure 8: Example output of our monitoring module

Another note on our implementation is that we used the gcc compiler without any flags (except
-Wall to catch warnings). This means that we excluded all optimization flags, i.e. -O, -O2, -O3,
-Ofast, etc. We did this to avoid strange floating point behavior, since running our program with
differing thread counts must preserve the exact output. In addition to this, removing optimization
allows our speedup to be more observable, and preserves the relative timings of various subroutines
in our implementations with varying thread counts. The lack of compiler optimization is for clarity’s
sake; compiling our code with -Ofast preserves our standard of correctness introduced in the
background section above (visualizer results are reasonable).
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Visualization

Before implementing any version of our application, we wrote a visualization program gviz to be
able to verify the correctness of our implementations. This program was written in C++ compiled
with the g++ compiler using the flags -m64 -std=c++11, and uses the OpenGL graphics framework
with the library glfw3 to quickly render bodies as they evolve through simulation steps. gviz reads
an output file from our application implementations to render the visualization.

Figure 9: Example visualized galaxy configuration (snapshot of visualizer in motion).

Survey of Implementations

In total, we implemented 3 parallel implementations of the galaxy simulator:

1. Parallel naive all-pairs O(n2) algorithm.

2. Parallel Barnes-Hut Algorithm with a fine-grained locking quadtree.

3. Parallel Barnes-Hut Algorithm with a lock-free quadtree.

We measure the performance of each implementation on 3 benchmarks:

A 1-to-1: Equal number of clusters and bodies.

B sqrt: The number of clusters is the square root of the number of bodies.

C single: There is a single cluster of all the bodies.

For each benchmark we vary θ between the values 0.1, 0.3, and 0.5, and the number of threads
between all values in the range [1, 16].
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gsim-bad

Our first implementation is named gsim-bad, since it is the naive all-pairs O(n2) algorithm intro-
duced above in the background section. Here our goals were to set up the infrastructure from which
we could develop the more sophisticated implementations. We decided to not use pre-developed
starter code in the aim of having as much control over the details of the implementation for ease
of parallelization.

Figure 10: Usage of gsim-bad.

First, we introduce constants and optimizations used in this implementation that are shared between
all 3 of our implementations. It is essential that we define simulation constants in such a way that
our visualizer is interpretable. Our main header file gsim.h contains definitions of the mass,
distance, and other constants used throughout our implementations:

Figure 11: Simulation constants used in all of our implementations.

Some things to note:

• DIST_SCALE is the side length of the square of space we are simulating.

• MASS_RANGE is a range of possible body masses; each body is uniformly assigned a mass
centered at INIT_MASS.

• SOFTENING_FACTOR is the softening factor ε described in the background section.

• TIME_STEP is the ∆t between simulation steps, and was chosen so that the visualizer would
evolve nicely in real time.

• MAX_ACCELERATION limits the maximum magnitude of a body’s acceleration so we do not get
the ”sling shot” effect as bodies get arbitrarily close to one another. This is required because
we do not consider body collisions.
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In the gsim-bad implementation we introduce the idea of body clustering, and its possible effects on
parallel performance. To initially distribute bodies in space, we first iterate over the number of input
clusters. These clusters are uniformally distributed in space, and each of the cluster’s arbitrarily
assigned bodies are positioned near the center of the cluster. In our Barnes-Hut implementations,
clustering affects quadtree performance.

A notable optimization we made is to ensure that the memory pertaining to each body is on an
independent cache line during execution. By doing this we ensure that we do not get significant
false sharing between threads, which may significantly bottleneck memory performance given a
snoop-based cache coherence system or similar. If two bodies had memory on the same cache
line, and two threads tried to access and modify that data at the same time, one of the threads
would have their cache line invalidated by the other writing thread. Thus, we would get more bus
traffic, as well as increased cache misses, which drastically reduces memory performance. Our body
structure body_t is 64 bytes with padding, perfectly enough to fit on a single x86 cache line.

Next we discuss our parallel approach to the sequential pseudo-code illustrated in the background
section above. For the naive algorithm, it is not necessary to even build the quadtree; we simply
need to consider each other body as we accumulate accelerations for a body. Therefore, it requires
the same work to update the acceleration of any body as any other body. From this we see that it
is very simple to load balance between threads effectively: we statically assign an equal number of
bodies to each thread. Updating positions, accelerations, and velocities of bodies can then be done
with #pragma omp parallel for schedule(static), and all threads have roughly equal work.

Below are the benchmark results for the parallel naive implementation, measured in NPM (Nanosec-
onds Per Move), where each move is considered to be updating the position of a single body.

We notice that there is a jump in NPM as we increase the thread count to 9 from 8. This is due to
the fact that processors on the GHC machines only have 8 cores, so by using more than 8 threads
we start taking advantage of Intel’s hyperthreading. Hyperthreading is a type of simultaneous
multithreading, which allows the processor core to pipeline more independent instructions at once.
However, each thread is still limited by the functional units of the core they are running on.
Since our application requires a significant amount of floating point operations, it is unlikely that
hyperthreading could improve performance dramatically as we are throughput bound. This is why
we see insignificant speedup past 8 threads.

In addition to this, all three of the benchmark graphs below seem identical. This makes sense,
since by using the naive all-pairs algorithm, clustering does not affect the amount of computation
we must do, since each body must consider each other body.
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Figure 12: Benchmark A on Naive Implementation.

Figure 13: Benchmark B on Naive Implementation.

Figure 14: Benchmark C on Naive Implementation.
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Optimistically, we expected to see linear speedup here, because the work each thread is doing is
completely independent in terms of both memory and local data. However, we need to consider that
all threads are running on the same machine, which opens the door to memory bandwidth issues,
cache coherency limitations, and other system-specific bottlenecks. The speedup we see is evident
that our implementation is efficiently balancing load between the threads, even if speedup is not
directly linear. In addition to this, each simulation step comes with some amount of overhead, such
as spawning and joining threads, which costs a constant amount per step and reduces speedup.

Naive Implementation Speedup

Threads Speedup

1 1.0×
2 1.71×
4 3.27×
8 6.26×

Now we consider the relative cost of each subroutine of the naive implementation. As evident in
the figure below, almost all of the work is dedicated to updating forces for bodies. This makes sense
because other costs are linear in the number of bodies, while updating forces is quadratic in the
number of bodies. Below are the results from running the naive implementation on 10000 bodies
for 50 steps, with 1 and 16 threads:

(a) Single Thread (b) 16 Threads

Figure 15: Naive implementation subroutine timings with 10000 bodies and 50 steps
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gsim-barneshut

Our next implementation is a parallel implementation of the Barnes-Hut Algorithm formulation
introduced in the background section above. We adapt the sequential algorithm as follows:

Algorithm 2 Parallel Galaxy Simulation with the Barnes-Hut Algorithm

1: procedure Simulate
2: for step in simulation steps do
3: #pragma omp parallel for schedule(static)

4: for body in galaxy bodies do
5: update body position and half timestep velocity

6: initialize quadtree
7: #pragma omp parallel for schedule(static)

8: for body in galaxy bodies do
9: insert body into quadtree

10: traverse quadtree to assign costs, masses, and center of masses to nodes
11: partition bodies between threads using the cost-zones method
12: #pragma omp parallel for schedule(static)

13: for thread in thread count do
14: for body in thread’s bodies do
15: update body acceleration by accumulating accelerations from the quadtree

16: #pragma omp parallel for schedule(static)

17: for body in galaxy bodies do
18: update body velocity

19: write simulation state to file for visualizer

There are two key changes when adapting the algorithm from sequential to parallel:

1. Outer for loops during the simulation step are identified with OpenMP pragmas to run in
parallel with static scheduling.

2. Instead of arbitrarily assigning bodies to threads, we partition bodies between threads based
on their expected work while traversing the quadtree. This is known as the cost-zone parti-
tioning scheme.

Before considering our method of partitioning to promote even work-load balancing, we will tackle
an essential challenge: how can we handle concurrent operations into the quadtree data structure?

This problem is actually simpler than we anticipated, because the only concurrent modifying op-
eration that is done to the quadtree is body inserts; once the tree is fully built no thread ever
modifies its data. Our basic approach to this problem is to have threads acquire locks for nodes
they are currently considering, then releasing them when they have completed the insert or moved
on to another node. This is a form of fine-grained locking since we are not locking the entire tree
structure, only the nodes that threads are considering for the insert.
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When a thread is inserting into a tree node there are 3 possible options:

1. The node is not a leaf node: The thread continues traversing down the tree until it reaches a
leaf.

2. The node is a leaf node and there is no body at the node: The thread simply inserts the body
to the node.

3. The node is a leaf node and there is a body at the node: This signifies a collision, and the
thread needs to allocate subtrees for the node and insert both bodies of the collision into the
correct subtree.

Initially, it seems that a thread only needs to lock the node after it recognizes that the node is a
leaf, since that is the only case in which any tree modification will occur. However, if we do not
lock the node before checking that it is a leaf, multiple threads could be trying to update the same
node’s body after recognizing the node as a leaf, which results in a race condition and undefined
behavior. Since we lock every node of the tree we consider during an insert, the root node receives
a significant amount of lock activity, which slows down concurrent tree inserts. However, we still
observe speedup because multiple bodies are pipelined through the tree nodes as threads attempt
to insert them, which is much faster than sequentially inserting bodies one by one. Even so, we
noticed that our tree building algorithm could take better advantage of parallelism, so it is the
topic of our next implementation.

Now we reach the meat of the parallelization challenge: how can we partition bodies between
threads such that each thread does roughly equal work during the force accumulation phase? The
high-level idea of the cost-zone method is that we use the work done for each body in the previous
iteration as an estimate for how much work each body requires in the current iteration. We keep
track of how much work a body requires by counting the number of nodes it traverses during the
force aggregation phase of the previous iteration.

Figure 16: Example of quadtree nodes with cumulative work.

To perform the partition, we first assign every node of the quadtree to have the work of the sum of
its subtree. This allows us to perform an in-order traversal of the tree without needing to recurse
down to each leaf nodes. We do this during the tree traversal stage highlighted in the pseudo-code
above.
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Figure 17: Ordering of quadtree nodes to perform in-order traversal.

Next we perform the partition by dividing the total work W into T roughly equal chunks, where T
is the number of threads. Each thread is assigned a disjoint range in [0,W ] with length ≈ W

T , and
we perform an in-order traversal of the tree to pick out bodies to add to each thread’s partition.
These traversals can easily be done in parallel, because no modification is being done to the tree.

Figure 18: Example of resulting body partitions using the cost-zone method.

Below are the benchmark results for our first fine-grained locking implementation of the Barnes-Hut
Algorithm:

16



Figure 19: Benchmark A on Fine-Grained Locking Barnes-Hut Implementation.

Figure 20: Benchmark B on Fine-Grained Locking Barnes-Hut Implementation.

Figure 21: Benchmark C on Fine-Grained Locking Barnes-Hut Implementation.
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From these graphs we notice that performance is significantly better in benchmark B than bench-
mark A or C. Consider the quadtree structure implied by a uniform distribution of bodies: since
strong clustering is rare, it becomes difficult to approximate a cluster as a single body. Because
of this, we utilize the quadtree much less in benchmark A, especially with lower θ values such
as θ = 0.1. In the same vein, we can think of the single cluster in benchmark C as being a uni-
form distribution in a smaller space around the center of the cluster, resulting in similar behavior to
benchmark A. We focus on the speedup of benchmark B, which we consider to be the representative
benchmark, since it effectively utilizes the quadtree structure.

θ = 0.1

Threads Speedup

1 1.0×
2 1.84×
4 3.17×
8 5.69×

θ = 0.3

Threads Speedup

1 1.0×
2 1.77×
4 2.93×
8 4.94×

θ = 0.5

Threads Speedup

1 1.0×
2 1.64×
4 2.75×
8 4.61×

Looking at how the speedup of our implementation on benchmark B varies with θ, we see that we
get less speedup with larger values of θ. This is because as θ increases, we utilize the quadtree
more to make broader force estimates. Because of the increased use of the quadtree to make
approximations, it is more likely that body costs will vary between iterations, since the amount we
will need to traverse through the quadtree can more easily very as bodies move through space. This
causes the cost-zones partition scheme to be less accurate, and thus introduces more imbalanced
work between threads, meaning one thread will become a bottleneck and slow execution for the
simulation step.

18



(a) Single Thread (b) 16 Threads

Figure 22: Subroutine timings with 10000 bodies, 50 steps, and θ = 0.3

In the naive implementation, over 99% of the time spent during execution is on force aggregation.
Here we see significant portions of time spent on quadtree operations, such as building, traversing,
partitioning, and freeing the quadtree. As we increase the number of threads, the relative portion
of work done to the quadtree increases, since the work of building and traversing the tree is less
parallelizable than aggregating forces using the tree. Specifically, we see a significant portion of
time spent on freeing and building the tree in the 16 threadded version, which we attempt to reduce
in our next implementation.
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gsim-lockfree

In the gsim-barneshut implementation, we utilized fine-grained locking to only lock the portions of
the quadtree which threads are currently considering during inserts. These locks were implemented
utilizing the omp_lock_t structure provided by the OpenMP API. However, as we increase the
number of threads which perform concurrent inserts into the quadtree, the fact that root nodes are
constantly being acquired and released poses a significant bottleneck.

To resolve this issue, we made a single major change from our gsim-barneshut implementation:
we implemented a lock-free quadtree. In order to preserve the atomicity of tree inserts, we need to
be able to perform an atomic compare-and-swap on two values simultaneously:

1. A flag determining whether the node is a leaf

2. A pointer to the body attached to the node (or NULL if no body is attached to the node)

We initially considered performing the double compare-and-swap operation discussed in our lec-
ture on lock-free data structures. However, this operation is not natively supported by the x86
architecture, and thus we were forced to explore other alternatives. Next we considered treating
the combination of the leaf flag and the body pointer as a single double word value (pointers are
64 bits, so this would require 128 bits), but the x86 64 bit architecture also does not support 128
bit compare-and-swap operations. Our solution to this problem is to treat the body pointer as an
integer of type uintptr_t, and use the last bit of the pointer as the leaf flag. We are able to do
this since body structures are 64 byte aligned, since we ensure that each body is on an independent
cache line, resulting in the least significant bit of any valid body pointer to be zero.

Figure 23: Value stored at quadtree nodes to represent body and leaf flag.

Now this value stored in quadtree nodes can be compare-and-swapped by threads atomically to
determine the state of the node and what action should be performed during an insert. For example,
if we successfully test that the value is a leaf and the body is NULL and replace it with a new body in
a single CAS, then we have completely atomically inserted a body at a leaf node. The other case is a
little more complicated: if we successfully test that the value is a leaf and the body is not NULL and
replace it completely with 0x0, then we have successfully initiated a collision reinsertion. However,
before we perform this test, if we detect the condition at all, we need to ensure that subtrees are
allocated before the test succeeds. This is because as soon as the test succeeds, another thread can
attempt to insert into a subtree which must be initialized by this point. To do this we perform a
series of loops and compare-and-swaps for each of the 4 subtrees to ensure they are allocated and
assigned to the quadtree node before updating the leaf and body status. We present our benchmark
results in the following section.
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Results

Representative Implementation and Parameters

We have chosen the lock-free implementation gsim-lockfree as our representative implementation,
since it is our most well-performing Barnes-Hut Algorithm variant. Below are the implementation’s
results on all benchmarks:

Figure 24: Benchmark A on Lock-Free Barnes-Hut Implementation.

Figure 25: Benchmark B on Lock-Free Barnes-Hut Implementation.

Figure 26: Benchmark C on Lock-Free Barnes-Hut Implementation.
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Here we will not go into any analysis or discussion that we have previously explored for other imple-
mentations (this can be found in the gsim-bad and gsim-barneshut subsections of the Approach
section above). The following table illustrates our lock-free implementation’s speedup with varying
θ on our representative benchmark B:

θ = 0.1

Threads Speedup

1 1.0×
2 1.83×
4 3.17×
8 5.71×

θ = 0.3

Threads Speedup

1 1.0×
2 1.79×
4 3.00×
8 5.18×

θ = 0.5

Threads Speedup

1 1.0×
2 1.75×
4 2.81×
8 4.73×

Our speedup illustrated in the tables above is more linear with number of threads than our fine-
grained lock implementation. This is because we have significantly reduced the bottleneck of
building the tree concurrently by introducing atomic inserts without locks. By parallelizing the
tree construction phase of the algorithm, we have lowered the constant overhead which must be
done at the start of each simulation step, and thus we have improved parallel performance as a
whole.
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(a) Single Thread (b) 16 Threads

Figure 27: Subroutine timings with 10000 bodies, 50 steps, and θ = 0.3

As we can see in the subroutine timing breakdown above, a more significant majority of the work
is dedicated to updating body forces than our fine-grained lock implementation, especially as the
number of threads increases. This is further evidence of the success of our lock-free implementation,
and how it reduces tree construction overhead. We note that freeing the quadtree remains a
significant bottleneck, as it must be done at the end of each simulation step and it is not easily
parallelizable, since it is completely reliant on memory performance. It is possible to arrange the
memory of our tree structure in such a way to promote spatial locality and reduce the need for
freeing the entire tree each step, but this is an extremely complex task that we do not expect to
see much performance gain from. Our current implementation already has quite good temporal
locality, since each thread is essentially assigned a cluster of bodies, and that cluster will access the
same memory over and over during the force computation phase of the algorithm (bodies consider
closer bodies more often than farther away ones).

We notice here that on our representative benchmark, benchmark B, with our representative choice
of θ = 0.3, we complete the benchmark simulation with 993.93129 NPM, whereas our fine-grained
lock implementation requires 1231.57978 NPM. This is a 1.24× speedup and indicates the success
of our lock-free implementation. In all following benchmarks, including our cross-system analysis,
we will be using benchmark B with θ = 0.3 on gsim-lockfree as the best example our of our
parallel implementations.
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Problem Size

In our application, problem size has a significant impact on parallel performance. That is to say,
different workloads do in fact exhibit different execution behavior, since as we increase the number
of bodies we are simulating on, the influence of constant overhead costs are reduced, and speedup
becomes more obvious.

8 thread speedup

Number of Bodies Speedup

10 0.52×
100 2.49×
1000 3.63×
10000 5.82×
100000 7.12×

With few bodies, we see that additional threads actually reduce performance, since we must deal
with the overhead of spawning and joining threads when there is not much work to do over all. As
we increase the number of simulated bodies, much of the overhead becomes insignificant. The tests
above were performed using gsim-lockfree with benchmark B and θ = 0.3 for 50 steps.

Our benchmarks in previous sections do not use large numbers of bodies for ease of benchmarking;
100000 bodies takes minutes to simulate on single-threaded operation with our poorer-performing
implementations.

Profiling

By using perf we can get the following performance counters from our lock-free implementation:

Figure 28: Profiling results for our lock-free implementation with 16 threads.
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Only 2.696% of all cache references are cache misses, which means that our algorithm does in fact
take advantage of temporal locality to increase cache performance. This could also be a result of
our avoidance of false sharing between threads by padding structures to cache lines.

We also notice that our implementation runs with 0.79 instructions per cycle, even though the
Intel Xeon processors on the GHC machines advertise 8 dual-precision floating-point operations
per cycle for each thread. This is clear evidence that we are not in fact taking full advantage of
the processor’s functional units. Even though we have great cache performance, our program is
still fundamentally memory bound due to the cost of traversing the tree and the large amounts of
memory accesses that requires.

Overall, these results indicate that our implementation is in fact efficient with the way it accesses
memory, and that we could actually introduce more accurate math libraries to take advantage
of the CPU resources without significant loss to performance. However, our main performance
bottleneck is still the large amount of memory accesses introduced by quadtree operations. This
includes costly dynamic memory allocation and freeing function calls.

If we were to continue this project and optimize one aspect of our implementation, it would be
to statically allocate a large space for the quadtree initially, and utilize those resources until we
are forced to reallocate. This prevents the need to allocate and free the entire quadtree each
simulation step and would drastically improve memory performance. However, we would need to
be very careful with how we keep track of allocated nodes and how they connect. We could take
advantage of the in-order tree traversal method presented in the Approach section above to index
each quadtree node in an allocated array, so we know which ones to assign as subtrees in the event
of an insert collision. This method would also increase spatial locality and decrease cache misses
further.

Cross-System Analysis

Speedup against 1 thread on GHC (100000 bodies)

Threads GHC Latedays

1 13043.22 NPM → 1.00× 15601.17 NPM → 0.84×
2 6877.98 NPM → 1.90× 8301.92 NPM → 1.57×
3 5008.33 NPM → 2.60× 10084.55 NPM → 1.29×
6 3082.10 NPM → 4.23× 3512.18 NPM → 3.71×
12 2404.02 NPM → 5.43× 2260.04 NPM → 5.77×

Nodes on the Latedays cluster have inconsistent speedup results as we increase the number of
threads. For example, we get a super-linear speedup of 2.87× when increasing the number of
threads from 2 to 3. This is likely because of characteristics of the memory system that Latedays
utilizes. This is purely speculation: it is possible that cache misses are extremely costly on the
Latedays nodes. This means that as we increase the number of threads and subdivide the bodies
into smaller chunks, there are fewer conflict cache misses, and thus memory performance can vary
drastically between thread counts, assuming each thread has an independent cache. Apparently
there is a Latedays node with 60 cores (Intel Xeon Phi), however none of the queues for qsub result
in using this node, so we were not able to perform any tests with over 12 threads.
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Other Considerations

Our project specifically targets multi-core CPU platforms by utilizing multithreading across cores
(and simultaneous multithreading if it is supported by a single core). We also have the loose re-
quirement that the CPUs compute resources are homogeneous, since our cost-zone partition scheme
assumes that each core of the CPU has the same computing power. However, when performing
large-scale galaxy simulations, we would ideally be able to simulate orders of magnitude larger than
100000 bodies. This is not really possible to do on a single CPU, since by Moore’s law, there is
only so much performance we can get out of area on a chip, and we cannot have unbounded cores
on a CPU. A more practical target architecture would be a distributed scientific supercomputer,
whose compute nodes each have multicore CPUs and communicate with one another to provide a
broader level of parallelism. This would result is a much greater degree of scaling, which would be
suitable for the scientific application.

We decided to use the cost-zones method of work load partitioning between threads. This is
a reasonable method of estimating the work each body requires to compute forces, and easily
partitioning bodies between threads. However, if we wanted this application to scale to scientific
uses, we would likely utilize the WS partition scheme with MPI as a framework to communicate
betweeen processes running on nodes of a supercomputer. The WS method assigns a spatially
relevant key to each body, and assigns bodies to processes by sorting the bodies based on that key.

A final approach we could have taken is to implement a similar algorithm on the GPU to take
advantage of its massive parallelization. This, however, would have required a completely different
approach from our algorithm, since it is difficult to have complex data structures such as a quadtree
accessed in a kernel. Popular GPU methods include the fast multipole method, and variants of the
Barnes-Hut Algorithm which utilize sparse tree structures, heaps, or similar.

Conclusion

We have implemented 3 versions of a simple galaxy simulation focused on only body-to-body
gravitational forces. One of the implementations is an optimized parallel naive all-pairs O(n2)
algorithm to serve as a baseline. The other two implement the Barnes-Hut Algorithm with variants
of a concurrent quadtree: fine-grained locking and lock-free. We have shown that galaxy simulation
in terms of purely gravitational forces is highly parallelizable on multi-core CPU platforms with
homogeneous compute resources by utilizing the cost-zones partition scheme. Our implementation
is significantly memory-bound, although our cache performance is quite good with a ≈ 3% cache
miss rate. This indicates that an ideal target architecture utilizes an efficient memory system,
including quick L1 cache-hit accesses and an optimized cache-coherence system for multi-core.
Our lock-free implementation can perform a simulation of over one million bodies in seconds with
compiler optimization flags enabled (gcc -Ofast), and our visualizations are intuitively reasonable
and preserve our definition of correctness.

As a whole the project was an exploratory dive into many parallel architecture and programming
concepts: problem subdivision, work-load assignment, concurrent data structures, artifactual com-
munication, cache-coherence considerations, profiling, benchmarking, and scaling analysis.
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Figure 29: NGC 4414, approximately 60 million light-years from Earth.
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Equal work was performed by both project members.
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